Na	me	
Pe	riod	

THE HERTZSPRUNG-RUSSELL DIAGRAM

Astronomers use two basis properties of stars to classify them. These two properties are luminosity and surface temperature. Luminosity usually refers to the brightness of the star relative to the brightness of our sun. Astronomers will often use a star's color to measure its temperature. Stars with low temperature produce a reddish light while stars with high temperatures shine with a brilliant blue-white light. Surface temperatures of stars range from 3000 degrees Celsius to 50,000 degrees Celsius. When these surface temperatures are plotted against luminosity, the stars fall into groups. Using data similar to what you will plot in this activity, Danish astronomer Ejnar Hertzsprung and US astronomer Henry Norris Russell independently arrived at similar results in what is now commonly referred to as the HR diagram.

Purpose: To make a Hertzsprung-Russell diagram.

Procedure:

- 1. Plot the stars listed in the data table at right on the graph paper provided.
- 2. Draw a circle around each grouping of stars on your graph. How many groups did you circle?
- How many groups did you circle?3. Label the following on your graph: main sequence, red giants, white dwarfs, supergiants.
- 4. Circle the dot representing the sun. What type of star is the sun?

STAR	LUMINOSITY	SURFACE	STAR	LUMINOSITY	SURFACE
	(X SUN)	TEMPERATURE			TEMPERATURE
		(X 1000°C)			(X 1000°C)
1. Orion	10,000	20	2. Betelgeuse	20,000	3
3. Polaris	6	5.9	4. Achemar	2,000	24
5. Antares	1,000	3	6. Aldebaran	100	4
7. Spica	800	25	8. Ceti	.1	4.5
9. Vega	40	12	10. Sirius A	20	11
11. Procyon A	50	6.9	12. Sun	1	5.7
13. Regulus	1,000	18	14. Procyon B	.004	6.6
15. Lacaille	.02	4.5	16. Altair	.01	9
17. Sirius B	.01	8	18. Alpha Centauri	1.6	5.7

Conclusions:

5. How many types of stars are shown on the HR diagram?

6. How do the brightness and temperature of the sun compare with those of other stars?

7. What is the relationship between luminosity and temperature for stars on the main sequence?

8. Is there a relationship between mass and luminosity for stars on the main sequence? ______ If so, state the relationship.

HERTZSPRUNG-RUSSELL DIAGRAM